skip to main content


Search for: All records

Creators/Authors contains: "Parker, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Living amphibians (Lissamphibia) include frogs and salamanders (Batrachia) and the limbless worm-like caecilians (Gymnophiona). The estimated Palaeozoic era gymnophionan–batrachian molecular divergence 1 suggests a major gap in the record of crown lissamphibians prior to their earliest fossil occurrences in the Triassic period 2–6 . Recent studies find a monophyletic Batrachia within dissorophoid temnospondyls 7–10 , but the absence of pre-Jurassic period caecilian fossils 11,12 has made their relationships to batrachians and affinities to Palaeozoic tetrapods controversial 1,8,13,14 . Here we report the geologically oldest stem caecilian—a crown lissamphibian from the Late Triassic epoch of Arizona, USA—extending the caecilian record by around 35 million years. These fossils illuminate the tempo and mode of early caecilian morphological and functional evolution, demonstrating a delayed acquisition of musculoskeletal features associated with fossoriality in living caecilians, including the dual jaw closure mechanism 15,16 , reduced orbits 17 and the tentacular organ 18 . The provenance of these fossils suggests a Pangaean equatorial origin for caecilians, implying that living caecilian biogeography reflects conserved aspects of caecilian function and physiology 19 , in combination with vicariance patterns driven by plate tectonics 20 . These fossils reveal a combination of features that is unique to caecilians alongside features that are shared with batrachian and dissorophoid temnospondyls, providing new and compelling evidence supporting a single origin of living amphibians within dissorophoid temnospondyls. 
    more » « less
  3. Abstract Non-archosaur archosauromorphs are a paraphyletic group of diapsid reptiles that were important members of global Middle and Late Triassic continental ecosystems. Included in this group are the azendohsaurids, a clade of allokotosaurians (kuehneosaurids and Azendohsauridae + Trilophosauridae) that retain the plesiomorphic archosauromorph postcranial body plan but evolved disparate cranial features that converge on later dinosaurian anatomy, including sauropodomorph-like marginal dentition and ceratopsian-like postorbital horns. Here we describe a new malerisaurine azendohsaurid from two monodominant bonebeds in the Blue Mesa Member, Chinle Formation (Late Triassic, ca. 218–220 Ma); the first occurs at Petrified Forest National Park and preserves a minimum of eight individuals of varying sizes, and the second occurs near St. Johns, Arizona. Puercosuchus traverorum n. gen. n. sp. is a carnivorous malerisaurine that is closely related to Malerisaurus robinsonae from the Maleri Formation of India and to Malerisaurus langstoni from the Dockum Group of western Texas. Dentigerous elements from Puercosuchus traverorum n. gen. n. sp. confirm that some Late Triassic tooth morphotypes thought to represent early dinosaurs cannot be differentiated from, and likely pertain to, Puercosuchus -like malerisaurine taxa. These bonebeds from northern Arizona support the hypothesis that non-archosauriform archosauromorphs were locally diverse near the middle Norian and experienced an extinction event prior to the end-Triassic mass extinction coincidental with the Adamanian-Revueltian boundary recognized at Petrified Forest National Park. The relatively late age of this early-diverging taxon (Norian) suggests that the diversity of azendohsaurids is underrepresented in Middle and Late Triassic fossil records around the world. UUID: http://zoobank.org/e6eeefd2-a0ae-47fc-8604-9f45af8c1147 . 
    more » « less
  4. Abstract

    Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.

    We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?

    Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).

    Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species.

     
    more » « less
  5. Abstract

    The Colorado Plateau Coring Project Phase 1 (CPCP‐1) acquired three continuous drill cores from Petrified Forest National Park (PFNP), Arizona, U.S.A., two of which (CPCP‐PFNP13‐1A and CPCP‐PFNP13‐2B) intersected the Upper Triassic Chinle Formation, Lower(?)‐Middle Triassic Moenkopi Formation (MF) and Permian Coconino Sandstone. We examined both cores to construct a high‐resolution magnetostratigraphy of MF strata, and progressive demagnetization data yield well‐defined, interpretable paleomagnetic results. Each lithostratigraphic member of the MF (Wupatki, Moqui, and Holbrook members) contains authigenic and detrital hematite as the dominant magnetic carrier with distinguishing rock magnetic characteristics. Magnetostratigraphy of MF strata in both CPCP‐1 cores consists of six normal and six reverse polarity magnetozones, from the youngest to the oldest, MF1n to MF6r. Recent single‐crystal chemical abrasion–thermal ionization mass spectrometry (CA‐TIMS) U‐Pb data from a sample in magnetozone MF1n yield a latest Anisian/earliest Ladinian (241.38 ± 0.43 Ma) age. Correlation of the CA‐TIMS‐calibrated magnetostratigraphy with the astronomically tuned polarity timescale for the Middle Triassic deep‐marine Guandao (GD) section of South China ties the magnetozone MF1n with GD8 and MF6r with GD2r, and implies that the MF spans, at most, the earliest Anisian (Aegean) to latest Anisian (Illyrian)/earliest Ladinian stages (ca. 246.8 to 241.5 Ma). This age estimate for the MF suggests that the timespan of the regional, pre‐Norian disconformity is about 17 Ma, which demonstrates that MF vertebrate fossil assemblages in east‐central Arizona are millions of years (minimally 3–4 Ma) younger than previously suggested and are all Anisian in age, with no indications of substantial hiatuses in the MF section.

     
    more » « less
  6. Abstract

    Archosauromorph reptiles underwent rapid lineage diversification, increases in morphological and body size disparity, and expansion into new adaptive landscapes. Several of the primary early archosauromorph clades (e.g. rhynchosaurs) are easy to differentiate from others because of their characteristic body types, whereas the more lizard‐like and carnivorous forms with long necks (e.g. tanystropheids) were historically all relegated to the groups Protorosauria or Prolacertiformes. However, it is now clear that these groups are polyphyletic and that a lizard‐like, carnivorous form is plesiomorphic for Archosauromorpha, and multiple subclades started with that body plan. Among these early forms isMalerisaurusfrom the Upper Triassic of India (M. robinsonae) and the Upper Triassic of south‐western USA (M. langstoni). In this paper, we critically re‐evaluate the genus. We find both species ofMalerisaurusas valid, and identifyMalerisaurusas an early diverging, but late‐surviving, carnivorous member of Azendohsauridae within Allokotosauria. Our histological analysis and assessment of ontogenetic changes of limb bones of small and large individuals demonstrate that the skeletons of the small forms grew slowly and became more robust through ontogeny, and that the larger recovered bones are at or near the maximum size of the taxon.MalerisaurusandMalerisaurus‐like taxa were common members of the Otischalkian–Adamanian (late Carnian to mid‐Norian) faunal assemblages from Upper Triassic strata of the south western USA, but they are absent from the younger Revueltian holochronozone. Specimens from western North America show that Allokotosauria had a near‐Pangaean distribution for much of the Middle Triassic to Late Triassic.

     
    more » « less